New icy world with 20000year orbit could point to Planet Nine

first_imgPASADENA, CALIFORNIA—The solar system has gained a new extreme object: L91, a small, icy world with one of the longest known orbits, taking more than 20,000 years to go around the sun. Researchers have yet to pin down the object’s size or mass, but they can add it to the growing list of frozen bodies circling well beyond Neptune in strange orbits that imply gravitational disruptions from outside the sun and the known giant planets. In the case of L91, some astronomers say that external disrupter could be a ninth giant planet, as yet undiscovered. However, L91’s discovery team favors a scenario in which the disturbance is more mundane: a passing star, or the Milky Way’s gravity.“It’s right at the limit of what we can detect,” said astrophysicist Michele Bannister of Queen’s University Belfast, who described the result today at the American Astronomical Society’s Division for Planetary Science meeting here.L91 never comes closer to the sun than 50 astronomical units (AU), or 50 times the Earth-sun distance. From there, it slowly crawls all the way out to 1430 AU. This means it has a more elongated orbit than Sedna, another distant Pluto-sized object, whose closest approach is 76 AU and whose estimated far point reaches 937 AU. L91 was found using the Canada-France-Hawaii Telescope at Mauna Kea in Hawaii, as part of the Outer Solar System Origins Survey. Sign up for our daily newsletter Get more great content like this delivered right to you! Country Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Emailcenter_img Astronomers once thought the solar system was relatively static, with the planets’ current configurations roughly unchanged since their birth in a gigantic cloud of dust and gas more than 4 billion years ago. But during the past decade or so, researchers have realized that planetary history is full of chaotic movements, with gas giants like Jupiter and Saturn drifting inward and outward from the sun. As these gargantuan masses moved, their gravitational influence sent other objects careening around, in some cases getting jettisoned entirely.L91 is thought to be another wanderer, except the ice giant Neptune might be responsible for its movements. Bannister sketched a scenario in which the icy object was born with a more regular elliptical orbit. Back then, its closest and furthest points from the sun would have been roughly similar.Over billions of years, Neptune’s gravitational influence might have given it little kicks that stretched out its orbital far point all the way to the inner part of the Oort cloud—a cluster of frozen bodies thought to start 2000 or more AU from the sun. Then a passing star or gravitational interactions with our Milky Way galaxy could have retracted L91’s orbit down to the less elongated but still extreme shape we see today.“It’s a story that’s not implausible, but I also think it’s not needed,” said planetary scientist Konstantin Batygin of the California Institute of Technology (Caltech) here, who wasn’t part of the recent discovery.His preferred explanation is gravitational tugging from Planet Nine, an as-yet-unseen Neptune-sized world that he and Mike Brown, another Caltech astronomer, came up with in January to explain the strange stretched-out orbits of a half-dozen objects, including Sedna. Bannister and her team modeled scenarios in which a Planet Nine–mass world could have provided the gravitational kicks necessary to elongate L91’s orbit but found that that would have tilted L91 into a different orbit. But Batygin says that galactic gravitational tugging is an inefficient process and that the Planet Nine explanation remains a less convoluted way of achieving the same result. Click to view the privacy policy. Required fields are indicated by an asterisk (*)last_img

Leave a Reply

Your email address will not be published. Required fields are marked *